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Exercise 1

Let V be a Banach space and F a nonempty subset of V' such that for any & € V* there
exists a finite constant C¢ such that

sup [¢ (2)] < Ce. (1)
el

Prove that E must be bounded.
Hint: Consider the map J : V — V** defined as
[J(@)](©) =€) VaeV, e V™. (2)

Prove that ||J (z)|+« = |z|| for any x € V. Use the Uniform Boundedness Principle to
show that J (E) is bounded and conclude.

Proof. Consider x € V. Recall that we proved that for any x we have

|z = sup  |¢(x)|
geV*, [¢lyw=1

We then get

| (@) [[ysse = sup  [[J ()] (&) = sup  [§(z)] = [z -
EeV*, [€]lyx=1 geV*, €]y =1

Consider now the set J (E) € V**. Consider £ € V*; using the hypothesis we then get

sup |[J ()] (§)| = sup ¢ (z)] < Ce.
el zeE

We can then apply the uniform boundedness principle to get that there exists a constant
C such that

sup |7 (@) |yex < C.

el

As a consequence we get
sup ||z| = sup |J (2) ]+ < C,
zelR zel

and therefore F is bounded.



Exercise 2

Consider (X, ) a measurable space (i.e., a set X with a o-algebra € in it), and consider
a projection-valued measure with values in H an Hilbert space. Let E, F € (.

a Prove that if En F' = ¢J then Ranp (E) L Ran u (F).
b Prove that p (E) u (F') is an orthogonal projector and that
Ran (4 (E) i (F)) = Ran g (E)  Ran s (F). 3)

Proof. To prove a first recall that from the definition of projection-valued measure we get
that for any E, F € Q we have u(EnF) = pu(E) u(F). Therefore if E n F = & we
have that p(E)u(F) = u(F)p(FE) = u () = 0. Let now ¢ € Ranpu (E), ¢ € Ran u (F).
Given that p (F) and p (F') are orthogonal projectors, we get ¢ = pu (E) v and ¢u (F') ¢,
and as a consequence

(6, 0) = (F) ¢, 1 (B) ) = (b, (F)* p (E) ) = (b, (F) p (B) 90y = 0,
and therefore Ran p (E) L Ran p (F').

To prove b, first we get that in general for any E, F € Q we get u (E)u(F) = u(En F),
and given that the latter is an orthogonal projector, also the former is. To prove (3), we
first prove <. Indeed we get trivially that Ran (u (E) i (F)) € Ran u (E), and on the other
hand Ran (u (E) 1 (F)) = Ran (u (F)u (F)) < Ranpu (F'), therefore it must be included

in the intersection.

On the other hand, to prove 2 let 1) € Ran i (F) nRan p (F'). Then we get that p (E) ¢
F

¢ = p(F) . As a consequence we get ¢ = p(E)y = p(E)p(F)y € Ran (u(E) p(F)),
and this concludes the proof.

O]

Exercise 3

Let ‘H be an Hilbert space. Let A be a self-adjoint bounded operator over H. Let B
a bounded operator over H such that [A, B] = 0. Consider a bounded complex-valued
measurable function f. Prove that [f (A),B] = 0.

Proof. Notice first that if [A, B] = 0 then [A", B] = 0 for any n € N. As a consequence,
if f is a polynomial we also get [f (A), B] = 0. Consider now f a real-valued continuous
function; from Weierstrass theorem we get that there exists a sequence of polynomials
pn, that converges uniformly to f as n goes to infinity, and applying the result to the
sequence of polynomials we get that also f(A) commutes with B. Now, any complex-
valued function f can be written as f = Ref + ilmf, and given that Ref and Imf are
continuous and real-valued the result is also true for complex-valued continuous functions.
Consider now the set F : {f : 0 (A) — C| [f (4), B]}; so far we proved that any complex-
valued continuous function is in F. Given that F is closed by uniformly bounded pointwise
limit, we get that 7 = L (0 (A); C), which concludes the result.

O



Exercise 4

Let H be an Hilbert space. Let T be a bounded operator over . We proved in class that
in general R (T) < ||T, where

R(T):= sup |A|. (4)
Aeo(T)

Exhibit an explicit operator such that R (T") < |T|.

Proof. Consider the operator T' defined on the Hilbert space H := L? (I), with I = (0, 1)
as

o) = [ b @

T is a well-defined bounded linear operator and we proved in one of the exercise sessions
that the spectrum of T"is o (T') = {0}, and therefore R (T") = 0. On the other hand, T" # 0
implies |T'|| > 0 = R(T).

O]



