
Introduction to Mathematical Quantum Theory
Solution to the Exercises

– 21.04.2020 –
Teacher: Prof. Chiara Saffirio

Assistent: Dr. Daniele Dimonte – daniele.dimonte@unibas.ch

Exercise 1

Let V be a Banach space and E a nonempty subset of V such that for any ξ P V ˚ there
exists a finite constant Cξ such that

sup
xPE

|ξ pxq| ď Cξ. (1)

Prove that E must be bounded.

Hint: Consider the map J : V Ñ V ˚˚ defined as

rJ pxqs pξq :“ ξ pxq @x P V, ξ P V ˚. (2)

Prove that }J pxq}V ˚˚ “ }x} for any x P V . Use the Uniform Boundedness Principle to
show that J pEq is bounded and conclude.

Proof. Consider x P V . Recall that we proved that for any x we have

}x} “ sup
ξPV ˚, }ξ}V ˚“1

|ξ pxq| .

We then get

}J pxq}V ˚˚ “ sup
ξPV ˚, }ξ}V ˚“1

|rJ pxqs pξq| “ sup
ξPV ˚, }ξ}V ˚“1

|ξ pxq| “ }x} .

Consider now the set J pEq Ď V ˚˚. Consider ξ P V ˚; using the hypothesis we then get

sup
xPE

|rJ pxqs pξq| “ sup
xPE

|ξ pxq| ď Cξ.

We can then apply the uniform boundedness principle to get that there exists a constant
C such that

sup
xPE

}J pxq}V ˚˚ ď C.

As a consequence we get
sup
xPE

}x} “ sup
xPE

}J pxq}V ˚˚ ď C,

and therefore E is bounded.
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Exercise 2

Consider pX,Ωq a measurable space (i.e., a set X with a σ-algebra Ω in it), and consider
a projection-valued measure with values in H an Hilbert space. Let E, F P Ω.

a Prove that if E X F “ H then Ranµ pEq K Ranµ pF q.

b Prove that µ pEqµ pF q is an orthogonal projector and that

Ran pµ pEqµ pF qq “ Ranµ pEq X Ranµ pF q . (3)

Proof. To prove a first recall that from the definition of projection-valued measure we get
that for any E, F P Ω we have µ pE X F q “ µ pEqµ pF q. Therefore if E X F “ H we
have that µ pEqµ pF q “ µ pF qµ pEq “ µ pHq “ 0. Let now ψ P Ranµ pEq, φ P Ranµ pF q.
Given that µ pEq and µ pF q are orthogonal projectors, we get ψ “ µ pEqψ and φµ pF qφ,
and as a consequence

xφ, ψy “ xµ pF qφ, µ pEqψy “ xφ, µ pF q˚ µ pEqψy “ xφ, µ pF qµ pEqψy “ 0,

and therefore Ranµ pEq K Ranµ pF q.

To prove b, first we get that in general for any E, F P Ω we get µ pEqµ pF q “ µ pE X F q,
and given that the latter is an orthogonal projector, also the former is. To prove (3), we
first prove Ď. Indeed we get trivially that Ran pµ pEqµ pF qq Ď Ranµ pEq, and on the other
hand Ran pµ pEqµ pF qq “ Ran pµ pF qµ pEqq Ď Ranµ pF q, therefore it must be included
in the intersection.

On the other hand, to prove Ě let ψ P Ranµ pEqXRanµ pF q. Then we get that µ pEqψ “
ψ “ µ pF qψ. As a consequence we get ψ “ µ pEqψ “ µ pEqµ pF qψ P Ran pµ pEqµ pF qq,
and this concludes the proof.

Exercise 3

Let H be an Hilbert space. Let A be a self-adjoint bounded operator over H. Let B
a bounded operator over H such that rA,Bs “ 0. Consider a bounded complex-valued
measurable function f . Prove that rf pAq , Bs “ 0.

Proof. Notice first that if rA,Bs “ 0 then rAn, Bs “ 0 for any n P N. As a consequence,
if f is a polynomial we also get rf pAq , Bs “ 0. Consider now f a real-valued continuous
function; from Weierstrass theorem we get that there exists a sequence of polynomials
pn that converges uniformly to f as n goes to infinity, and applying the result to the
sequence of polynomials we get that also f pAq commutes with B. Now, any complex-
valued function f can be written as f “ Ref ` iImf , and given that Ref and Imf are
continuous and real-valued the result is also true for complex-valued continuous functions.
Consider now the set F : tf : σ pAq Ñ C| rf pAq , Bsu; so far we proved that any complex-
valued continuous function is in F . Given that F is closed by uniformly bounded pointwise
limit, we get that F “ L8 pσ pAq ;Cq, which concludes the result.
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Exercise 4

Let H be an Hilbert space. Let T be a bounded operator over H. We proved in class that
in general R pT q ď }T }, where

R pT q :“ sup
λPσpT q

|λ| . (4)

Exhibit an explicit operator such that R pT q ă }T }.

Proof. Consider the operator T defined on the Hilbert space H :“ L2 pIq, with I “ p0, 1q
as

Tψ pxq :“

ż 1

0
ψ pxq dx.

T is a well-defined bounded linear operator and we proved in one of the exercise sessions
that the spectrum of T is σ pT q “ t0u, and therefore R pT q “ 0. On the other hand, T ‰ 0
implies }T } ą 0 “ R pT q.
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